Lockheed Report 487.

This is a facsimile of an engineering report produced in June 1936 by Lockheed engineers Clarence L. "Kelly" Johnson and W. C. Nelson entitled "Report No. 487 - Range Study of Lockheed Electra Bimotor Airplane."

The International Group for Historic Aircraft Recovery 2812 Fawkes Drive • Wilmington, DE 19808 • USA
Voice 302.994.4410 • Fax 302.994.7945 • www.tighar.org • info@tighar.org
\qquad
Prepared by C.L. Johnson
Date June 4, 1936
\qquad
\qquad
\qquad
ITEM

Face page
Index
Introduction
Summary and recommendations
Discussion
Discussion of curves derived

Additional data

Conclusions

Flight procedure data
Effect of head and tail winds

Various curves on range performance
Take-off curves and effect of wing flaps

Normal airplane cruising charts 16
Engine power curves 17-18
Appendix and computaions15

PAGES.

0

00

1
$1-4$
3

4-5

6

6

7

8
$9-14$16

19-36.
\qquad
Date June 4, 1936

INTRODUCTION.

This report contains a complete study of the factors determining the maximum practical range of the Lockheed Electra Model 10E bimotor airplane. The problem is gone into in considerable length in order that complete recommendations may be made as to optimum methods of take-off, climb and level flight. Such factors as the effect of altitude, wind, variation of propulsive efficiency at constant forward speed, and variation of specific fuel consumption are all included in the study. As a summary, curves are given showing the recommended values of the above throughout a flight of the greatest possible range.

The airplane under consideration is a Model 10E Electra equipped with Pratt and Whitney S3Hl engines rated 600 BHP at 2300 rpm for take-off and not more than 412 BHP at 2000 rpm for cruising. To enable close control to be maintained over the mixture strength, a Cambridge gas analyzer is connected into the exhaust system. Hamilton Standard constant rpm, controllable pitch propellers are used. Added to this equipment is a Sperry Gyro-Pilot to lessen fatigue during long flights.

The engine operating conditions have been given careful consideration in recommending a flight procedure. Combinations of rpm and manifold pressure are chosen with regard to engine reliability and smoothness as well as optimum propulsive efficiency.

SUMMMARY AND RECOMMENDATIONS.
$* *$

The complete performance has been computed conservatively based on actual flight test results on Model 10E*. Fuel consumption data is based on results which have been obtained in flight with careful mixture control. To get a range of 4500 miles it will be necessary to calibrate the Cambridge Analyzer so that the fuel consumption curve shown on page 13 can be obtained.
\qquad
Date June 14, 1936

SUMMARY AND RECOMMENDATIONS.

The important results from the report may be summarized as follows:
(1). Best take-off distance is obtained using a 30° wing flap setting. The tail of the airplane should be lifted off the ground as soon as possible and held up through the take-off run.
(2). On a hard run-way, using 600 BHP per engine, the take-off distance is 2100 feet at sea level.
(3). Climb after take-off with a gross weight of 16,500 \# is 500 feet per minute with wing flaps at 30° (using take-off power).
(4). After obtaining a safe altitude (50 to 100 feet), the flaps should be retracted and the engine power reduced to 550 BHP per engine at 2200 rpm .
(5). The climb should be continued at this power to an altitude of 2000'.
(6). At 2000^{\prime}, the power should be reduced to $380 \mathrm{BHP} /$ engine and the flight continued at the values of altitude, power, rpm and speed shown on the inclosed curve.
(7). During the maximum range flight, the following considerations apply:
a. Variation of altitude from that specified by amounts as much as 2000' (except in the heavy load condition) has very little effect on the range.
b. With headwinds or tails winds up to 20 mph , the best airspeed is wthin 5 mph of that shown on the flight procedure curve.
c. When the wind increases with altitude, the load condition, and power conditions should be carefully considered when choosing an altitude different than that shown on the curves. No strict rules can be given covering the optimum flight procedure with varying wind gradients with altitude.
d. Increase the power output when climbing from one altitude to another. Climb at an indicated speed of 120 to 130 mph .

SUIMMARY AND RECOMMENDATIONS.

$* ~$

Continuing the discussion of important factors during the maximumrange flight -
e. Watch the mixture closely at all times. The engines must be run very lean.
f. In climb when the power output is increased, check the mixture and head temperatures.
g. When about 100 to 150 miles from the end of the flight, put the ship in a power glide losing about 250 to 300 feet of altitude per minutes while maintaining cruising power output.
h. The best average altitude at which to fly and the best power output are shown on the flight procedure curve. The lighter the load, the higher the density altitude for best range.
i. Standard carburetor air temperature has been assumed in choosing manifold pressures and rpm to obtain a given power. Normal deviations of carburetor air temperature likely to be encoucntered may be neglected.
j. If icing conditions are encountered, so that carburetor heat must be applied, the mixture may have to be richened somewhat to prevent detonation in the engines. Normally, the carburetor heat should be set to "FULL COLD".

DISCUSSION.
$* * * * * * * * * * *$

The computations and most of the basic curves are given in an attached appendix. In attacking the problem, complete calculations of the altitude-speed-power characteristics of the airplane with three different gross weights were made to get the optimum operating conditions. Most of the final curves are derived using graphical integration of the basic curves.

Methods of computation are given in the Appendix and no further discussion on procedure will be given here. Perhaps the simplest way to give the results of the complete study is to comment on each of the final curves presented.

The various curves are denoted by figure numbers at the bottom of each sheet. The important points about each figure will be discussed in turn:

FIGURE I .

This is the curve sheet which summarizes the results of the maximumrange study. Starting with a gross weight of 16,500 (1200 gallons of fuel), the elapsed time and distance in air miles is shown plotted against the optmum operating conditions of the airplane and engine. This curve should greatly simplify the pilot's duties.

FIGURE II.

The effect of head winds and tail winds on the optimum flight speed for a typical case is plotted. For a 20 mph head wind, the indicated airspeed should be increased about 4 mph for the heavy load conditioin. For the 20 mph tail wind, the speed should be decreased about the same amount. Values for other load conditions and wind speeds can be obtained from this chart. It applies exactly to sea level only, but the trends shown apply fairly well to the range of altitudes likely to be used.

FIGURE III.

The best speeds, power output and the elapsed time for the longest range flight using the most conservative fuel consumption curve is plotted against distance. This curve was modified and approximated to get Figure I. It is interesting to note that over a fairly wide range of power and speeds, the airplane efficiency is constant, so that the same range can be obtained with considerable difference in elapsed time. The flight procedure outlined in Figure I is based on the lower power output at the beginning of the flight and the higher power over the greater part of the flight so that a low elapsed time can be obtained with the engine operating at its best efficiency and reliability.

FIGURE IV .

Figure IV shows the variation of gross weight and best altitude in the maximum range flight.

DISCUSSION OF CURVES DERIVED.

FIGURE V.

Figure V shows the effect of altitude and power output on the air miles per gallon for the airplane at three different gross weights. Neglecting any wind gradient, it will be seen from the curves how little gain there is in flying at a high altitude over the major part of the distance considered. With the highest gross weight, there is a definite disadvantage in flying higher than 2000'.

FIGURE VI.

This curve was derived to show the minimum amoun of fuel necessary to go various distances less than the maximum range. It also shows the gross weight with the above amount of fuel. In order to increase the cruising speed for distances less than the maximum, more fuel than that shown will be taken along so that higher power outputs may be used. This curve is based on the conservative fuel consumption curve.

FIGURE VII.

Figure VII is a collection of various curves showing specific fuel consumption, optimum power and weight conditions and the effect of gross weight on best fuel consumption per mile. The fuel consumption curves are average propeller load curves which apply to the average pitch settings of the propeller and throttle setting of the engine during the flight. The higher curve has been referred to as the "conservative curve". The lower curve which reaches a minimum specific fuel conssumption of $.42 \# / \mathrm{BHP} / \mathrm{Hr}$. is the one which must be obtained to get 4500 mile range.

The other curves shown on Figure VII are self explanatory.

FIGURE VIII.

Figure VIII is also a collection of curves used to derive the best flight procedure. The decrease in miles per gallon with increased gross weight, and the corresponding increase in speed for best range as the gross weight is increased are very interesting.

FIGURE IX.

Figure IX gives the engine and propeller data for take-off calculations and the effect of flap setting on take-off distance at sea level. The computations are based on having a good hard run-way and using the best take-off technique. The tail should be lifted as soon as possible for the minimum take-off run. The rate of climb after take-off is also shown for all flap settings.

Prepared by_C. L. Johnson

Engine power curves of two types are included in Figures X and $X I$. The normal cruising chart at the ATC gross weight is also furnished on page 16. The increase in gross weight from 10,500 \# to the average weight throughout the maximum range flight (namely 12,900\#) cuts down the high speed to 200 mph at 10,000 ' at 450 BHP output per engine. High speed at sea level with a gross weight of $16,500 \#$ and $450 \mathrm{BHP} / \mathrm{engine}$ is 177 mph .

CONCLUSIONS.
$* * * * * * * * * * * *$

As a result of the study just concluded, the following results are obtained:
(1). It is possible to fly a Lockheed Electra Model lOE non-stop for a distance between 4100 and 4500 miles starting out with 1200 gallons of gasoline and the proper amount of oil.
(2). The above range is for zero wind conditions. The procedure outlined in this report should be followed to get optimum results. This is especially true in regard to maintaining proper engine mixture control.
(3). The Cambridge Gas Analyzers should be carefully calibrated in flight to see if the fuel consumption data used in this analysis can be obtained. This should be done before attempting any long range flight.
(4). The airspeed indicator must be calibrated for pitot-static position error.
(5). Low power output flights should be made with the leanest mixture setting to be used to check the engine head temperatures. They may run too cool so that a shutter arrangement might have to be made so that the head temperatures can be kept up to the value giving best engine efficiency.
(6). Do not draw more than 600 BHP for one minute on the take-off. Cut back the power as soon as it is safe.

prepared by W.C. Nelson.

analysis Range
prepared by $\begin{aligned} & \text { W.C. } \text { Nelson. } \\ & \text { date } 5-18-36 .\end{aligned}$ LOCKHEED AIRCRAFT CORP.
page $\frac{10}{10 \mathrm{E}}$
model 10E
report no. 487

FIGURE V.

PAGE 12
prepared by W.C. Nelson. LOCKHEED AIRCRAFT CORP.

OPTIMUM R.P.M., POWER, and WEIGHT CONDITIONS FOR ANY ALTITUDE

Spec. Fuel cons. (\#/BHP/Hr.)

FIGURE VII.

Analysis - Range.
By - W. C. Nelson Date-5-19-36.

Page - 16
Model - 10-E
Report-487

SEA LEVEL HP. REQUIRED CURVES FLAPS DOWN 30°

$V_{\text {mph. }}$	$q^{* / / f^{2}}$	$C L$	$C D$	$H P_{\text {REQ }}$
87.5	19.5	1.85	.244	508
90	20.8	1.73	.218	498
95	23.1	1.56	.197	528
100	25.5	1.41	.179	556
105	28.0	1.29	.165	591
110	30.9	1.17	.151	626
120	36.8	0.98	.132	711
130	43.1	0.84	.119	815
140	50.0	0.72	.110	940
150	57.4	0.63	.104	1092
160	65.0	0.55	.100	1270

$H_{\text {REQ }}=\frac{D V}{550}=\frac{C_{D A q} Y_{\text {mph. }}=1.22 C D q V_{\text {mph. }} . . .375}{}$

SEA LEVEL HP. AVAILABLE - 600 B.HP. - 2300 r.p.m. - FLAPS 30°

$V_{\text {mph }}$	$V / N D$	$C S$	β	η	$T . H \mathbb{P}^{2}$	$H \mathbb{P}_{\text {REQ }}$	$H \mathbb{P}_{\text {ex. }}$	$R C$
90	.382	.72	15°	0.62	745	498	247	494
95	.403	.76	15°	0.64	769	528	241	482
100	.425	.80	16°	0.65	780	556	224	448
105	.446	.84	165°	0.665	780	556	208	416
110	.467	.88	17°	0.675	810	626	184	368
120	.510	.96	17°	0.70	840	711	129	258
130	.552	1.04	17°	0.72	865	815	50	100
140	.595	1.12	18°	0.74	889	940	-	-

FLAPS NEUTRAL

$V_{\text {mph }}$	T.HP	$H \mathbb{P P}^{2}$ REQ	$H \mathbb{P}_{\text {.ex. }}$	R_{c}
95	769	-	-	-
100	780	498	282	564
105	799	484	315	630
110	810	476	334	668
120	840	480	360	720
130	865	500	365	730
140	889	520	369	738
150	900	556	344	688

Analysis Range
Prepared by C.L. Johnson
Date June 17, 1936

Date 5－19－36．

METHOD OF COMPUTATION

The basic horsepower required curves are developed from flight test data and include an additional variation in＂e＂to account for the change in propulsive efficiency with angle of attack．Horsepower available curves are determined from the engine propeller characteristics．From these curves the cruising speeds at various power outputs and altitudes is determined and the optimum power－r．p．m．conditions selected for the engine．

Complete data on the fuel consumption of the engine was not available so generalized data on aircooled engines was used．（see pg．）From the known speeds and power outputs a chart of miles per gallon for various gross weights and alittudes was derived． From this chart the optimum power and altitudes for flight were selected and a graph of miles per gallon versus fuel load at any point during the trip was drawn up．Integration of this curve yields the range．Similarly，integration of the hours per mile versus miles travelled curve gives the elapsed time at any point during the trip．

Range，elapsed time，optimum speeds，power output，and altitude are then plotted on pgs．and ．A curve of the gall－ ons of fuel necessary for any given range is also presented on pg

Recommended Sea Level Engine Conditions．

Gross Wt．	Power	R．P．M．	Man．Pr．
$9300 ⿰ ⿰ 三 丨 ⿰ 丨 三 一 灬$	200 BHP．	1700	24.5 HHg
9300	250	1700	26.6
9300	300	1800	27.8
9300	350	1950	28.5
12,900	250	1700	26.6
12,900	300	1800	27.8
12,900	350	1950	28.5
16,500	350	1950	28.5
16,500	375^{*}	2100	28.5
16,500	400^{*}	2100	29.5

＊Would only be used at altitude where max．cruising lim－ itations of $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}$ ．and $28.5^{\prime \prime} \mathrm{Hg}$ ．would not be exceeded．

Take－off will be considered with a gross weight of 16,500 非 and a power output of 600 BHP．per engine at 2300 r．p．m．at sea level．Schrenk＇s Method of analysis will be used．The following table of take－off relationships is then derived．

V	V / ND	C_{p}	β	C_{T}	Thrust	Thrust（Effective）
$0 \mathrm{~m} \cdot \mathrm{p} \cdot \mathrm{h}$.	0	.0418	12.9°	.102	2,320	非／prop．
10	.030	.0418	12.9°	.160	.100	2,270
20	.061	.0418	13.0°	.097	2,200	2,110
30	.091	.0418	13.1°	.093	2,120	2,050
40	.121	.0418	13.1	.092	2,090	1,970
50	.152	.0418	13.2	.090	2,050	1,950
60	.182	.0418	13.3	.086	1,960	1,910
70	.312	.0418	13.4	.082	1,860	1,820
80	.242	.0418	13.7	.080	1,820	1,730
90	.273	.0418	13.8	.078	1,770	1,690
100	.303	.0418	14.0	.075	1,710	1,650

＊Effective thrust includes a 7% reduction factor due to tip losses．

Then：

$$
S_{1}=\frac{W}{g} \frac{q_{1}}{\left(P_{o}^{-} P_{1}\right)} \quad \log _{e} \frac{P_{0}}{P_{1}^{\ominus}}
$$

S is the take－off run in ft．
W^{1} is the gross weight $=16,500$ 非
$\mathrm{g}=$ std．air density $=.0765$ 非／cu．ft．
$\mathrm{q}_{1}=$ take－off impact pressure．
$\mathrm{P}_{\mathrm{o}}^{1}$ is the initial accelerating force． P_{1} the final．

$$
\begin{aligned}
& .9 \mathrm{C}_{\mathrm{L} \max .}=1.31 \quad \mathrm{q}_{1}=27.5 \text { 非/sq.ft. (104 m.p.h.) } \\
& \mathrm{C}_{\mathrm{D}}=0.148 \\
& \mathrm{P}_{\mathrm{O}}=\mathrm{T}_{\mathrm{O}}-\mu \mathrm{W}=4320-.04 \times 16,500=3650 \text { 非 }
\end{aligned}
$$

The coefficient of friction of .04 corresponds to a good field with hard turf．

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{T}_{1}-\mathrm{D}_{1}=3180-.148 \times 458 \times 27.5=1317 \text { 非 } \\
& \mathrm{S}_{1}=\frac{16,500}{.0765} \frac{27.5}{(3660-1317)} \log _{\mathrm{e}} \frac{3660}{1317}=\underline{2590 \mathrm{ft} .}
\end{aligned}
$$

Investigating the effect of flaps down 20° ：

$$
\begin{aligned}
& 0.9 \mathrm{C}_{\text {Lmax. }}=1.57 \mathrm{o}_{1}=23 \mathrm{~F} / \mathrm{sq} . \mathrm{ft} .(95 \mathrm{~m} . \mathrm{p} . \mathrm{h} .) \\
& \mathrm{C}_{\mathrm{D}}=0.183 \\
& \mathrm{P}_{\mathrm{O}}=3660 \text { 非 } \\
& \mathrm{P}_{1}=1620 \times 2-0.183 \times 458 \times 23=1310 \text { 非 } \\
& \mathrm{S}_{1}=\frac{16,500}{.0765} \frac{23}{2350} \log _{e} \frac{3660}{1310}=\underline{2180 \mathrm{ft}}
\end{aligned}
$$

Flaps down 30° ：

$$
\begin{aligned}
& 0.9 C_{\text {Lmax. }}=0.9 \times 1.35=1.67 \quad \mathrm{q}_{1}=21.6 \text { 非/sq.ft. }(92 \mathrm{~m} . \mathrm{p} . \mathrm{h} .) \\
& C_{D}=0.21 \\
& \mathrm{P}_{\mathrm{o}}=3660 \text { 非 } \\
& \mathrm{P}_{1}=2 \times 1660-0.21 \times 458 \times 21.6=1240 \text { 非 } \\
& S_{1}=\frac{16,500}{.0765} \frac{21.6}{2420} \log _{e} \frac{3660}{1240}=\underline{2080 \mathrm{ft} .}
\end{aligned}
$$

Flaps down 45° ：
$0.9 \mathrm{C}_{\text {Lmax．}}=1.75 \quad \mathrm{q}_{1}=20.6$ 非／sq．ft．（ $\left.89.5 \mathrm{~m} . \mathrm{p} \cdot \mathrm{h}.\right)$
$C_{D}=0.243$
$P_{0}=3660$ 非
$P_{1}=2 \times 1660-0.243 \times 458 \times 20.6=1000$ 非
$S_{1}=\frac{16,500}{.0765} \frac{20.6}{2660} \log _{e} \frac{3660}{1000}=2165 \mathrm{ft}$.

Date 5-20-36.

COMPUTATIONS (continued)

From the preceding calculations and graphs it is evidenct that the minimum take-off run occurs with the flaps set at approximately 30°, when it is reduced some 20% from the unflapped run.

Computations for the rate of climb curves are included in the appendix, pg.

ANALYSIS Range PREPARED BY W. C

analysis Range PREPARED BYW.C. Ne1son FREMED-18-36.

Analysis - Range
By - W.C. Nelson Date - 5-18-36.

Pg - 30

SEA LEVEL HORSEPOWER REQUIRED CURVES

$$
\begin{aligned}
W=\begin{array}{ll}
C L A q & A=458.3 f^{2} \\
C L & =\frac{36.0}{9} \text { for } 16,500^{*} \\
& =\frac{28.2}{9} \text { for } 12,900^{*} \\
C L & =\frac{203}{9} \text { for } 9,300^{*} \\
H P_{\text {REQ }} & =\frac{D V}{550}=\frac{C_{D} A q V_{m p h}}{375}=1.22 C_{D} q V_{m p h}
\end{array} .
\end{aligned}
$$

Analysis - Range
By - W.C. Ne1son Date - 5-18-36.

Pg - 31
Model - 10E
Report - 487

SEA LEVEL 200 B.HP. 1500 R.P.M.

Analysis - Range
By - W.C. Ne1son Date - 5-18-36.

Pg - 32
LOCKHEED AIRCRAFT CORP.
Model - 10E
Report - 487

SEA LEVEL 300 B.HP. 1900 R.P.M.

Analysis - Range
By - W.C. Ne1son Date - 5-18-36.

Pg - 33
Model - 10E
Report - 487

10,000 250 B.HP. 1800 R.P.M.

Analysis - Range
By - W.C. Ne1son Date - 5-18-36.

Pg - 34
LOCKHEED AIRCRAFT CORP.

Model - 10E
Report - 487

9300\# GROSS WEIGHT

B. $\mathrm{HP}^{\text {P/ENG. }}$	R.P.M.	MAN. PR.	Altitude	SPEED	S.F.C.	total fuel con. IN GAL PER HR	MILES PER GAL.	HR/GAL.
350	1950	28.5 Hg	0	174 mph.	0.46/BTP....	53.6	3.24	. 0186
	1950	26.5	5,000	181	0.46	53.6	3.37	. 0186
	1950	24.6	10,000	189	0.46	53.6	352	. 0186
300	$\begin{aligned} & 1800 \\ & 1800 \\ & 1800 \end{aligned}$	$\begin{aligned} & 27.8 \\ & 25.8 \\ & 23.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ 5,000 \\ 10,000 \end{array}$	$\begin{aligned} & 164 \\ & 170 \\ & 177 \end{aligned}$	$\begin{aligned} & 0.465 \\ & 0.465 \\ & 0.465 \end{aligned}$	$\begin{aligned} & 465 \\ & 465 \\ & 465 \end{aligned}$	$\begin{aligned} & 3.52 \\ & 3.66 \\ & 3.80 \end{aligned}$	$\begin{aligned} & .0215 \\ & .0215 \\ & .0215 \end{aligned}$
250	$\begin{aligned} & 1700 \\ & 1700 \\ & 1700 \end{aligned}$	$\begin{aligned} & 26.6 \\ & 24.5 \\ & 225 \end{aligned}$	$\begin{array}{r} 0 \\ 5,000 \\ 10,000 \end{array}$	$\begin{aligned} & 151 \\ & 157 \\ & 162 \end{aligned}$	$\begin{aligned} & 0.47 \\ & 0.47 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 39.2 \\ & 39.2 \\ & 39.2 \end{aligned}$	$\begin{aligned} & 3.85 \\ & 4.00 \\ & 4.14 \end{aligned}$	$\begin{aligned} & .0255 \\ & .0255 \\ & .0255 \end{aligned}$
200	$\begin{aligned} & 1700 \\ & 1700 \\ & 1700 \end{aligned}$	$\begin{aligned} & 245 \\ & 225 \\ & 205 \end{aligned}$	$\begin{array}{r} 0 \\ 5,000 \\ 10,000 \end{array}$	$\begin{aligned} & 135 \\ & 139 \\ & 143 \end{aligned}$	$\begin{aligned} & 0.515 \\ & 0.515 \\ & 0.515 \end{aligned}$	$\begin{aligned} & 34.3 \\ & 34.3 \\ & 34.3 \end{aligned}$	$\begin{array}{r} 3.93 \\ 4.05 \\ 4.17 \\ \hline \end{array}$	$\begin{aligned} & .0291 \\ & .0291 \\ & .0291 \end{aligned}$
12,900\# GROSS WEIGHT								
350	$\begin{aligned} & 1950 \\ & 1950 \\ & 1950 \\ & \hline \end{aligned}$	$\begin{aligned} & 285 \\ & 265 \\ & 24.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ 5,000 \\ 10,000 \\ \hline \end{array}$	$\begin{aligned} & 165 \\ & 170 \\ & 175 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.46 \\ & 0.46 \\ & \hline \end{aligned}$	$\begin{aligned} & 53.6 \\ & 53.6 \\ & 53.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.07 \\ & 3.17 \\ & 3.26 \\ & \hline \end{aligned}$	$\begin{aligned} & .0186 \\ & .0186 \\ & .0186 \\ & \hline \end{aligned}$
300	$\begin{aligned} & 1800 \\ & 1800 \\ & 1800 \end{aligned}$	$\begin{aligned} & 27.8 \\ & 25.8 \\ & 23.8 \end{aligned}$	$\begin{array}{r} 0 \\ 5,000 \\ 10,000 \end{array}$	$\begin{aligned} & 152 \\ & 156 \\ & 158 \end{aligned}$	$\begin{aligned} & 0.465 \\ & 0.465 \\ & 0.465 \end{aligned}$	$\begin{aligned} & 465 \\ & 465 \\ & 465 \end{aligned}$	$\begin{aligned} & 3.27 \\ & 3.36 \\ & 3.40 \end{aligned}$	$\begin{aligned} & .0215 \\ & .0215 \\ & .0215 \end{aligned}$
250	$\begin{aligned} & 1700 \\ & 1700 \\ & 1700 \end{aligned}$	$\begin{aligned} & 26.6 \\ & 24.5 \\ & 225 \end{aligned}$	$\begin{array}{r} 0 \\ 5,000 \\ 10,000 \end{array}$	$\begin{gathered} 133 \\ 133 \\ \end{gathered}$	$\begin{gathered} 0.47 \\ 0.47 \\ - \end{gathered}$	$\begin{array}{r} 39.2 \\ 39.2 \\ \hline \end{array}$	$\begin{gathered} 3.39 \\ 3.39 \\ - \end{gathered}$	$\begin{aligned} & .0255 \\ & .0255 \\ & - \end{aligned}$
16,500\# GROSS WEIGHT								
350	$\begin{aligned} & 1950 \\ & 1950 \\ & 1950 \end{aligned}$	$\begin{aligned} & 285 \\ & 265 \\ & 24.6 \end{aligned}$	$\begin{array}{r} 0 \\ 5,000 \\ 10,000 \end{array}$	$\begin{gathered} 144 \\ 128 \\ - \end{gathered}$	$\begin{gathered} 0.46 \\ 0.46 \\ - \end{gathered}$	$\begin{array}{r} 53.6 \\ 53.6 \\ \hline \end{array}$	$\begin{gathered} 2.68 \\ 2.38 \\ - \end{gathered}$	$\begin{aligned} & .0186 \\ & .0186 \end{aligned}$ $-$
400	$\begin{aligned} & 2100 \\ & 2100 \\ & 2100 \end{aligned}$	$\begin{aligned} & 295 \\ & 27.2 \\ & 255 \end{aligned}$	$\begin{array}{r} 0 \\ 5,000 \\ 10,000 \end{array}$	$\begin{aligned} & 162 \\ & 164 \\ & 159 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.465 \\ & 0.465 \\ & 0.465 \end{aligned}$	$\begin{aligned} & 62.0 \\ & 62.0 \\ & 62.0 \end{aligned}$	$\begin{aligned} & 2.61 \\ & 2.65 \\ & 2.56 \end{aligned}$	$\begin{aligned} & .0161 \\ & .0161 \\ & .0161 \end{aligned}$
350	1950	275	2,500	141	0.46	53.6	2.63	. 0186
400	2100	285	2,500	163	0.465	62.0	2.63	. 0161
375	$\begin{aligned} & 2100 \\ & 2100 \\ & 2100 \end{aligned}$	$\begin{aligned} & 28.5 \\ & 26.5 \\ & 245 \end{aligned}$	$\begin{array}{r} 0 \\ 5,000 \\ 10,000 \end{array}$	$\begin{aligned} & 153 \\ & 151 \\ & 143 \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.46 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 575 \\ & 575 \\ & 575 \end{aligned}$	$\begin{aligned} & 2.66 \\ & 2.62 \\ & 2.48 \end{aligned}$	$\begin{aligned} & .0174 \\ & .0174 \\ & .0174 \end{aligned}$

Analysis - Range
By - W.C. Nelson Date - 5-18-36.

Pg - 35
Model - 10E
Report - 487

Values Derived From Graphical Integration of Miles Per Gallon Vs. Fuel Load Curve.
$\left.\begin{array}{|l|l|l|l|}\hline \text { FUEL } \\ \text { USED }\end{array} \quad \begin{array}{l}\text { DISTANCE } \\ \text { COVERED }\end{array} ~ \begin{array}{l}\text { OPTIMUM } \\ \text { SPEED }\end{array} \quad \begin{array}{l}\text { HOURS } \\ \text { PER } \\ \text { MILE }\end{array}\right]$

Values Derived From Graphical Integration of Hours Per Mile Vs. Distance Covered.

DISTANCE	ELAPSED
COVERED	TIME
$1,000 \mathrm{mi}$	6.20 hrs
2,000	12.49
3,000	18.94
4,000	25.68

DISTANCE DESIRED	FUEL NECESSARY	GROSS WEIGHT
0 MILES	0 gal .	9,300\#
500	120	10,020
1000	244	10,764
2000	520	12,420
3000	820	14,220
4000	1165	16,240

